A STUDY OF COMPOSITE PLATES WITH HOLES/INCLUSIONS

Ronald Bense and Ozden Ochoa

Mechanical Engineering Department Texas A&M University College Station, Texas 77843

MODEL DESCRIPTION

Delamination characterization of a plate with a hole/inclusion is presented. A closed form solution is developed to obtain stresses on the boundary of hole/inclusion in the plate. Once the location with highest tangential stress is identified, FEM analysis of a laminate under tensile loading is considered. The models for the closed form and FEM are given in Figure 1 A & B. The examples are for $[\pm 35/0/90]_S$ laminate of AS4/3501-6. Tensile, Biaxial and Shear loads are considered.

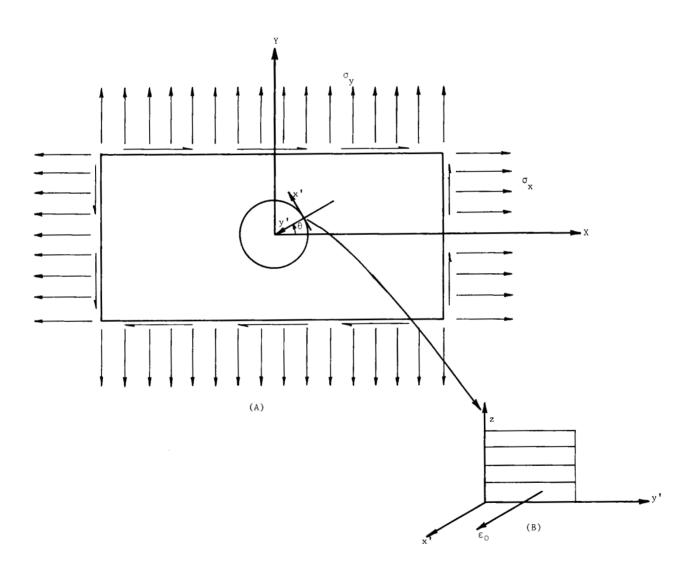


Figure 1

PROCEDURE

The analysis procedure is summerized in the following figure. The combination of closed-form (CFH - closed-form, hole [1] and CHI - closed-form, inclusion [2]) and FEM [3] solutions provide efficiency and economy in the interpretation of results.

Note: CLT is a Classical Laminate Plate Theory Algorithm

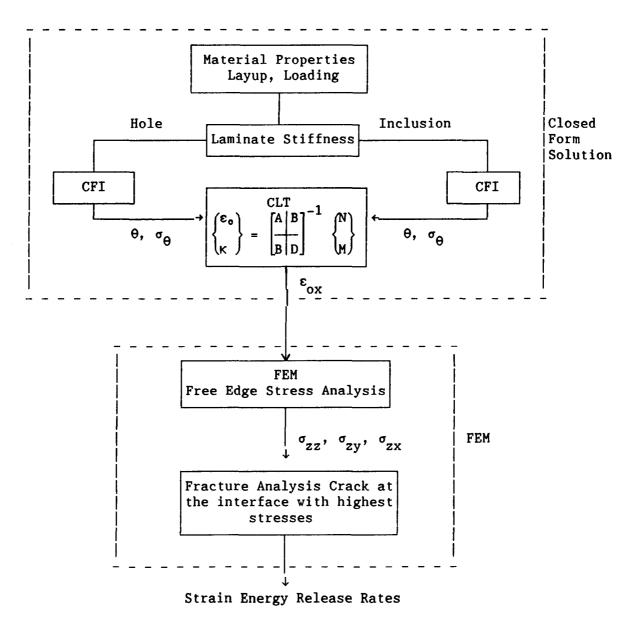


Figure 2.

INPLANE STRAIN/STRESS RESULTS

 $\{\pm 35/0/90\}$ laminate is subjected to 5000 psi axial stress. The response of this laminate with a hole and with inclusions are tabulated below. The tangential stress is obtained from the closed-form solution and the strain is evaluated from CLT.

	E inclusion/ E plate	σ_{Θ}^{\prime} applied	Е 0
hole (w/o inclusion)	0	3.280	1710με
with soft inclusion (epoxy)	.169	1.865	972με
with rigid inclusion (steel)	3.128	.724	377με

Figure 3

TANGENTIAL STRESS AROUND THE HOLE BOUNDARY

The tangential stress field for a laminate with a hole subjected to uniaxial tension and shear is presented in Figure 4. These stresses are displayed as a function of θ around the boundary of the hole. As can be observed, the highest tangential stress is at θ = 90° for the tensile load and θ = 50.5° for the shear load.

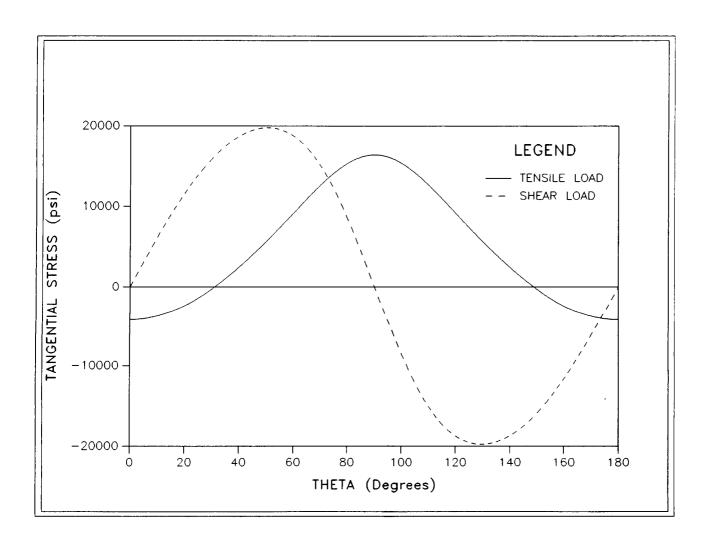


Figure 4

INTERLAMINAR NORMAL STRESS VARIATION

The closed-form reslults of Figure 4 are converted to applied tensile strain, ε = 1710µ ε to be used in the FEM calculations. The FEM analysis models the laminate cross-section through-the-thickness and evaluates the interlaminar normal and shear stresses. Figure 5 presents the variation of the interlaminar normal stress along the y axis for each interface. Note that high stresses are at the free edge, between the 90/90 laminae and the 0/90 laminae.

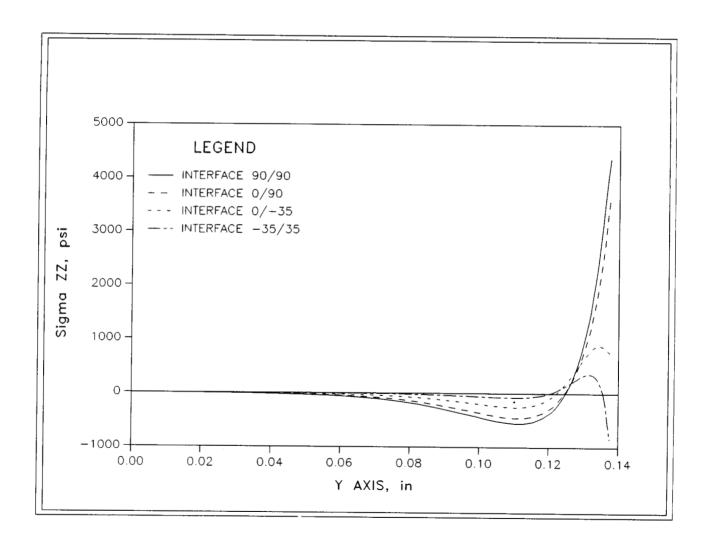


Figure 5

INTERLAMINAR SHEAR STRESSES

Figure 6 presents the variation of the interlaminar shear stresses, σ_{zx} and σ_{zy} , along the Y-axis for each interface. It should be observed that the highest σ_{zx} is at the free edge between the -35/35 laminae and that σ_{zx} rapidly vanishes inside the laminate. Note that the highest σ_{zy} is just inside the laminate near the free edge between the 0/-35 laminae.

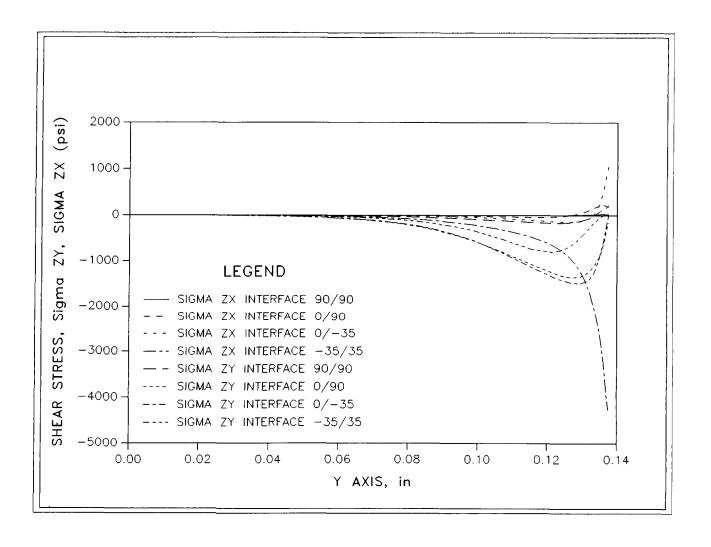


Figure 6

INTERLAMINAR STRESSES THROUGH THE THICKNESS

Figure 7 presents a comparison of the relative magnitudes of σ_z , σ_z , σ_z , at the free edge through the thickness. As can be observed, σ_z is much smaller than σ_z and σ_z . σ_z is relatively large at the midplane, 90/90, and at the first interface, 0/90. The shear stress σ_z is highest at the third interface, -35/35. The fourth interface is the top surface of the laminate and has no interlaminar stresses.

The strain energy release rates for this laminate are evaluated by modeling a crack of a length equal to the thickness of 8 plies at the 0/90 interface. The resulting ratios are $G_{\rm I}/G{\rm TOT}$ = .94096 and $G_{\rm II}/G{\rm TOT}$ = .05827, indicating that Mode I behavior is dominant.

Figure 7

DEFORMATION OF HOLE/INCLUSION BOUNDARY

The effects of inclusion moduli on deformation are displayed in Figure 8. As expected a soft inclusion results in larger displacements. The $[\pm 35/0/90]_S$ laminate is loaded with uniaxial tensile stress of 50 ksi. The inclusion diameter is .5 inches.

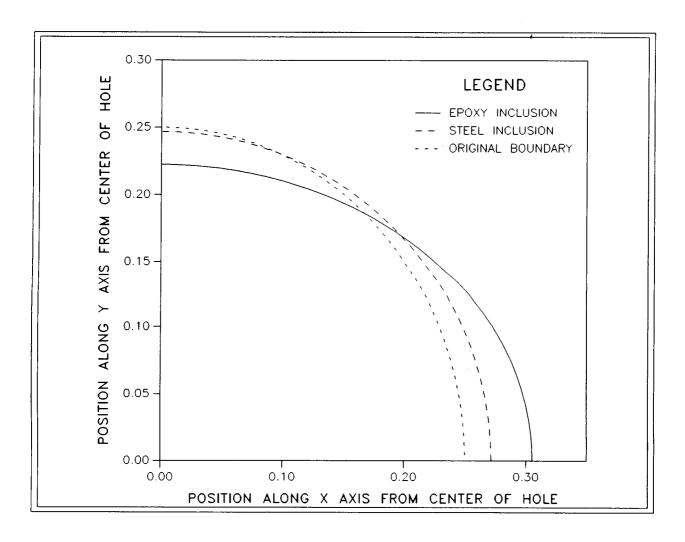


Figure 8

REFERENCES

- 1. S.C. Tan, "Composite Laminates Containing an Elliptical Opening," <u>J. of Composite Materials</u>.
- 2. S.G. Lekhnitskii, Anisotropic Plates, pp.190-218.
- 3. W.S. Chan and 0.0. Ochoa, "Suppression of Edge Delamination In Composite Laminates By Terminating a Critical Ply Near the Edges," presented at the AIAA 29th SDM Conference, 1988.